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Abstract 

Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions 

including neurodegenerative diseases. Parkinson’s disease is a neurodegenerative pathology caused by abnormal 

degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the 

midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical 

setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency 

transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic 

setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to allevi-

ate motor and non-motor deficits that characterize Parkinson’s disease.
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Background
Parkinson’s disease

Parkinson’s disease (PD) is one of the most common 

neurodegenerative diseases worldwide, second only to 

Alzheimer’s disease (AD) [1]. PD is accompanied by the 

impairment of the cortico-subcortical excitation and 

inhibition systems, hence belonging to the involuntary 

movement diseases [2]. PD is caused by progressive loss 

of structure and function of dopaminergic neurons in the 

ventral tegmental area and substantia nigra pars com-

pacta in the midbrain with subsequent damage to the 

basal ganglia (BG) [3]. Cumulative evidence supports 

the hypothesis that PD is the result of complex interac-

tions among genetic abnormalities, environmental toxins 

and mitochondrial dysfunction [4–6]. �e mechanisms 

of neuronal degeneration characterizing PD have been 

studied extensively and include a complex interplay 

among multiple pathogenic processes including oxidative 

stress, protein aggregation, excitotoxicity and impaired 

axonal transport [7]. �e increasing number of genes 

and proteins critical in PD is unraveling a complex net-

work of molecular pathways involved in its etiology, sug-

gesting that common mechanisms underlie familial and 

sporadic PD, the two forms of this pathology. While 

the sporadic form is the most common (90–95% of PD 

cases), only 5–10% of PD cases are familial [8, 9]. At least 

ten distinct loci are responsible for rare Mendelian forms 

of PD and mutations in five genes have been linked to 

familial PD [10]. PD is characterized by motor and non-

motor symptoms. �e main motor symptoms include 

bradykinesia, tremor at rest (tremor affecting the body 

part that is relaxed or supported against gravity and not 

involved in purposeful activities [11]), rigidity and pos-

tural instability [12–17]. However, motor symptoms are 

now considered as the “tip of the iceberg” of PD clinical 

manifestations. PD non-motor symptoms include cogni-

tive decline, decrease in sleep efficiency, increased wake 

after sleep onset, sleep fragmentation, and vivid dreams 

as well as neuropsychiatric symptoms such as depression 
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and psychosis, [18–23]. Pain syndrome and autonomic 

dysfunctions have also been observed in PD patients 

[24–26].

Neuroimaging and genes: towards a personalized 

medicine for Parkinson’s disease

Several research groups have begun to perform genome-

wide association studies (GWAS) on data or index 

measures derived from brain images, with the final 

goal of finding new genetic variants that might account 

for abnormal variations in brain structure and func-

tion that increase the risk of a given disease. Numerous 

genes have been identified using GWAS and have been 

associated with PD. �ey include alpha-synuclein, vacu-

olar protein sorting-associated protein 35, human leu-

kocyte antigen family, leucine-rich repeat kinase 2 and 

acid β-glucosidase [27–29]. Neuroimaging associates 

individual differences in the human genome to structural 

and functional variations into the brain. Van der Vegt and 

colleagues reported structural and functional brain map-

ping studies that have been performed in individuals car-

rying a mutation in specific PD genes including PARK1, 

PARK2, PARK6, PARK7, PARK8, and discussed how this 

“neurogenetics-neuroimaging approach” provides unique 

means to study key PD pathophysiological aspects [30]. 

In addition, neuroimaging of presymptomatic (non-man-

ifesting) mutation carriers has emerged as a valuable tool 

to identify mechanisms of adaptive motor reorganiza-

tion at the preclinical stage that may prevent or delay PD 

clinical manifestation [30]. Neuroimaging may be useful 

to study the effectiveness of electromagnetic therapy in 

PD patients.

Available therapies for Parkinson’s disease

PD treatment includes the use of pharmacological agents 

such as the dopaminergic agent -3,4-dihy-droxy-phe-

nylalanine (Levodopa or -dopa) and stereotactic brain 

surgery which are associated with numerous side effects 

[31]. For example, the on-and-off phenomenon includes 

profound diurnal fluctuations in the psychomotor state 

of PD patients treated with -dopa [32]. Furthermore, 

-dopa loses effectiveness over time and can induce 

motor fluctuations such as the “wearing off” effect and 

dyskinesia [33]. While -dopa metabolites are neurotoxic 

[33], the search for alternate, non-dopaminergic thera-

pies to overcome the -dopa-induced side effects has 

positioned adenosine A2A receptor (A2AR) antagonists 

as a promising therapeutic option for PD treatment [34]. 

Despite the favorable features of A2AR antagonists, their 

pharmacological properties, such as poor oral bioavail-

ability and the lack of blood–brain barrier permeability, 

constitute a major problem to their clinical application 

[35]. Furthermore, regular physiotherapy and instrumen-

tal rehabilitation that have been employed to manage 

PD symptoms, such as tremor, slowness and difficulty in 

walking, are only moderately helpful [36]. Electromag-

netic therapy has also been extensively used for PD treat-

ment and may represent a promising therapeutic option 

for this condition since it promotes a lasting improve-

ment in motor and non-motor symptoms [37–41].

Electromagnetic therapy background

Electromagnetic therapy includes the use of six groups 

of electromagnetic fields as previously described [42, 43] 

and summarized below:

  • Static/permanent magnetic fields can be created by 

various permanent magnets as well as by passing 

direct current through a coil.

  • Transcranial magnetic stimulation (TMS) utilizes 

frequencies in the range 1–200 Hz.

  • Low-frequency electromagnetic fields mostly utilize 

60 Hz (in the US and Canada) and 50 Hz (in Europe 

and Asia) frequencies in distribution lines.

  • Pulsed radiofrequency fields utilize frequencies in the 

range 12–42 MHz.

  • Millimeter waves refer to very high-frequency in the 

range 30–100 GHz.

 • Pulsed electromagnetic fields (PEMFs) utilize fre-

quencies in the range 5–300  Hz with very specific 

shapes and amplitudes.

Electromagnetic therapy is defined as the use of time-

varying electromagnetic fields of low-frequency values 

(3  Hz–3  kHz) that can induce a sufficiently strong cur-

rent to stimulate living tissue [44]. Electromagnetic fields 

can penetrate all tissues including the epidermis, dermis, 

and subcutaneous tissue, as well as tendons, muscles and 

bones [45]. �e amount of electromagnetic energy used 

and its effect on the target organ depends on the size, 

strength and duration of treatment [44]. Electromag-

netic fields can be divided into two categories: static and 

time-varying. Electromagnetic therapy falls into two cat-

egories: (1) hospital use which includes TMS, repetitive 

transcranial magnetic stimulation (rTMS) and high-fre-

quency TMS and (2) home use including PEMF therapy.

Aim and searching criteria
We searched Pubmed/Medline using the keywords “Par-

kinson’s Disease” combined with “electromagnetic ther-

apy”, “TMS”, “rTMS”, “high-frequency TMS” or “PEMF” 

and we included articles published between 1971 and 

2015. �is article aims to review the state of the art of 

electromagnetic therapy for treatment of PD.
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Transcranial magnetic stimulation
TMS is a safe and non-invasive method of electrical stim-

ulation of neurons in the human cerebral cortex, modi-

fying neuronal activity locally and at distant sites when 

delivered in series of pulses [46]. TMS is also a useful tool 

to investigate various aspects of human neurophysiology, 

particularly corticospinal function, in health and disease 

[47]. An electromagnetic field generator sends a current 

with a peak amplitude of about 8,000 A that lasts about 

1 ms, through an induction coil placed on the scalp [48]. 

TMS is based on the principle of electromagnetic induc-

tion, as discovered by Faraday in 1838. �e current flow-

ing briefly in the iron coil placed over a patient’s head 

generates an electromagnetic field that penetrates the 

scalp and skull reaching the brain where it induces a sec-

ondary ionic current. �e site of stimulation of the brain 

is the point along its length at which sufficient current 

passes through its membrane to cause depolarization 

[49]. TMS can be used to determine several parameters 

associated to different aspects of cortical excitability: 

(1) the resting motor threshold or active motor thresh-

old which reflects membrane properties; (2) the silent 

period, which is a quiescent phase in the electromyogram 

(EMG), is partially of cortical origin and is related to the 

function of gamma-aminobutyric acid receptors; (3) the 

short intracortical inhibition and facilitation which occur 

when a subthreshold stimulus precedes a suprathreshold 

stimulus by less than 5 ms or 8–30 ms, respectively. �e 

peak of electromagnetic field strength is related to the 

magnitude of the current and the number of turns of wire 

in the coil [50]. �e electrical current is rapidly turned 

on and off in the coil through the discharge of electronic 

components called the capacitors.

Transcranial magnetic stimulation in Parkinson’s disease

TMS clinical applications were first reported by Barker 

and colleagues who stimulated the brain, spinal cord 

and peripheral nerves using TMS with low or no pain 

[51]. Following this work, several TMS protocols that 

evidenced the correlation of TMS with peripheral EMG 

and monitored the modulation of TMS-induced motor 

evoked potentials (MEPs), were described [52–54]. For 

example, Cantello and coworkers studied the EMG 

potentials evoked in the bilateral first dorsal interosseus 

muscle by electromagnetic stimulation of the cortico-

motoneuronal descending system in 10 idiopathic PD 

patients without tremor but with  rigidity with asym-

metric body involvement and 10 healthy controls [55]. 

�e threshold to cortical stimulation measured on the 

rigid side of PD patients was lower than on  the con-

tralateral side or than normal values. PD patients’ MEPs 

on the rigid side were larger compared to controls when 

the cortical stimulus was at rest or during slight tonic 

contraction of the target muscle [55]. Several clinical tri-

als have pointed out the therapeutic efficacy of TMS in 

PD patients [3, 31, 56, 57]. For example, biomagnetic 

measurements performed using magnetoencephalog-

raphy (MEG) in 30 patients affected by idiopathic PD 

exposed to TMS evidenced that 60% of patients did not 

exhibit tremor, muscular ache or dyskinesias for at least 

1 year after TMS therapy [58]. �e patients’ responses to 

TMS included a feeling of relaxation, partial or complete 

disappearance of muscular ache and -dopa-induced dys-

kinesias as well as rapid reversal of visuospatial impair-

ment [58]. Additional MEG measurements in PD patients 

also showed abnormal brain functions including slowing 

of background activity (increased theta and decreased 

beta waves) and increased alpha band connectivity [59]. 

�ese changes may reflect abnormalities in specific net-

works and neurotransmitter systems, and could be useful 

for differential diagnosis and treatment monitoring.

Repetitive transcranial magnetic stimulation
rTMS is a non-invasive technique of brain stimulation 

based on electromagnetic induction [60]. rTMS has the 

potential to alter cortical excitability depending on the 

duration and mode of stimulation [61]. �e electromag-

netic pulse easily passes through the skull, and causes 

small electrical currents that stimulate nerve cells in the 

targeted brain region [62]. Since this type of pulse gener-

ally does not reach further than two inches into the brain, 

it is possible to selectively target specific brain areas [62]. 

Generally, the patient feels a slight knocking or tapping 

on the head as the pulses are administered. rTMS fre-

quencies of around 1  Hz induce an inhibitory effect on 

cortical excitability [63] and stimulus rates of more than 

5 Hz generate a short-term increase in cortical excitabil-

ity [64]. rTMS induces a MEP of the muscles of the lower 

extremities by stimulating the motor and supplementary 

motor area (SMA) of the cerebral cortex [31].

Repetitive transcranial magnetic stimulation in Parkinson’s 

disease

Several studies have reported the efficacy of rTMS on 

PD motor symptoms [65–69]. �ese effects are primarily 

directed at surface cortical regions, since the dopamin-

ergic deficiency in PD is localized to the subcortical BG. 

�e BG comprises a group of interconnected deep brain 

nuclei, i.e. the caudate and putamen, globus pallidus, sub-

stantia nigra and the subthalamic nucleus (STN) that, 

through their connections with the thalamus and the 

cortex, primarily influence the involuntary components 

of movement and muscle tone [70]. Several studies have 

documented the long-term effects of rTMS applied to 

PD patients for several days, rather than single sessions 

[71–73]. For instance, Shimamoto and coworkers applied 
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rTMS on a broad area including the left and right motor, 

premotor and SMAs in nine PD patients for a period of 

2  months, and observed improvements in the Unified 

Parkinson’s Disease Rating Scale (UPDRS), a rating scale 

used to follow PD progression [74]. A further trial in PD 

patients reported a shortened interruption of voluntary 

muscle contraction, defined cortical silent period, sug-

gesting a disturbed inhibitory mechanism in the motor 

cortex [57]. PD patients show altered activation pat-

terns in the SMA and overall less cortico-cortical excit-

ability [75–81] that play a key role in motor selection in 

sequentially structured tasks, including handwriting. In 

a randomized controlled trial with a crossover design in 

PD patients, rTMS applied over the SMA influenced sev-

eral key aspects of handwriting, e.g. vertical size and axial 

pressure, at least in the short term [82]. Ten PD patients 

treated with rTMS, evidenced short-term changes in 

functional fine motor task performance. rTMS over 

the SMA compensated for cortico-striatal imbalance 

and enhanced cortico-cortical connections. �is treat-

ment improved PD patients deficits such as reduction in 

speed during the writing task and decrease in letter size 

(micrographia).

Two mechanisms have been proposed to explain how 

cortically directed rTMS may improve PD symptoms: 

(1) rTMS induces brain network changes and positively 

affects the BG function; (2) rTMS directed to cortical 

sites compensates for PD-associated abnormal changes 

in cortical function [60]. Indeed, in support of the former 

mechanism, rTMS might modulate cortical areas, such 

as the prefrontal cortex and primary motor cortex, which 

are substantially connected to both the striatum and STN 

via glutamatergic projection, and thus indirectly modu-

late the release of dopamine in the BG [83]. Several TMS/

functional imaging studies have demonstrated the effects 

of rTMS on BG and an increase in dopamine in the BG 

after rTMS applied to the frontal lobe [84].

rTMS can also transiently disrupt the function of a 

cortical target creating a temporary “virtual brain lesion” 

[85–87]. Mottaghy and coworkers have studied the abil-

ity of rTMS to produce temporary functional lesions in 

the BG, an area involved in working memory, and cor-

related these behavioral effects with changes in regional 

cerebral blood flow in the involved neuronal network 

[88]. Functional imaging and TMS studies in PD subjects 

have shown altered cortical physiology in areas associ-

ated to the BG such as the SMA, dorsolateral prefrontal 

cortex and primary motor cortex [57, 89], characterized 

by excessive corticospinal output at rest, concomitant to, 

or resulting from a reduced intracortical inhibition [60]. 

�ese altered changes in cortical function in PD patients 

might avoid the suppression of competing motor areas 

and therefore decrease the motor system performance, 

resulting in symptoms such as tonic contractions and 

rigidity [89].

rTMS has not only been applied to a motor area of the 

brain but has also been used to target PD non-motor 

deficits. For example, in a study involving six PD patients 

with mild cognitive impairment, a cognitive dysfunction 

defined by deficits in memory, rTMS was delivered over 

the frontal region at 1.2 times the motor threshold (mini-

mum stimulation intensity) of the right abductor pollicis 

brevis muscle [3]. Over a period of 3 months, rTMS was 

performed for a total of 1200 stimulations. Improvement 

in neuropsychological tests (the trail-making test part 

B and the Wisconsin card-sorting test) was observed in 

all patients. In addition, an improvement in subjective 

symptoms and objective findings were also observed 

by the subjects, their families, and the therapists. �e 

changes observed in PD subjects included “faster reac-

tions”, “better body movement and smoother standing-

up and movement”, “more active”, “more cheerful”, and 

“more expressive”. An increase in the amount of conver-

sation, an increase in the neural mechanisms of mutual 

understanding within daily living and an improvement 

in responses to visitors were also noted, if compared to 

baseline. Additionally, changes such as better hand usage 

while eating and better sleep were also observed.

Cognitive dysfunction is often seen in PD patients with 

major depression and its neural basis could be the func-

tional failure of the frontostriatal circuit [3, 90]. Ten days 

of rTMS in the frontal cortex can effectively alleviate PD-

associated depression as shown by an open trial report-

ing a significant decrease in the Hamilton Depression 

Rating Scale (HDRS) scores [91]. A further double blind, 

sham stimulation-controlled, randomized study, involv-

ing 42 idiopathic PD patients affected by major or minor 

depression undergoing rTMS for 10  days, evidenced a 

mean decrease in HDRS and Beck depression inventory 

after therapy [92].

In opposition to the above mentioned positive reports 

concerning the efficacy of rTMS in PD patients, a lack of 

effectiveness of rTMS on objective or subjective symp-

toms has also been described. For example, in a study 

involving 85 idiopathic PD patients, no significant differ-

ences in clinical features were observed between patients 

receiving rTMS and sham stimulation [65]. Moreover, 

total and motor score of UPDRS were improved by rTMS 

and sham stimulation in the same manner. Despite this 

improvement, PD patients treated with rTMS revealed 

signs of depression, reporting no subjective benefits. In 

another randomized crossover study, 10 patients affected 

by idiopathic PD received rTMS to the SMA which 

resulted in subclinical worsening of complex and pre-

paratory movement [93]. �e rTMS protocol was not 

tolerated by 2 out of 10 patients. Furthermore, this study 
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showed that, following rTMS, subtle regional disruption 

can persist for over 30  min, raising safety concerns. A 

further randomized crossover study involving 11 patients 

with idiopathic PD, treated with rTMS over the motor 

cortex, did not show any therapeutic effect on concurrent 

fine movement in PD [94].

In summary, conflicting findings regarding the effi-

cacy of rTMS in PD have been reported and they can 

be explained by differences in stimulation parameters, 

including intensity, frequency, total number of pulses, 

stimulation site and total number of sessions. �ere-

fore, further studies comparing different parameters are 

required.

High-frequency transcranial magnetic stimulation
High-frequency TMS consists of continuous high-fre-

quency stimulation of specific brain regions, including 

the motor cortex, cerebellum and BG, through implanted 

large four-contact electrodes connected to a pulse gen-

erator and positioned into the center of the target region 

[70]. Such stimulation induces an electrical field that 

spreads and depolarizes neighboring membranes of cell 

bodies, afferent and efferent axons, depending on neu-

ronal element orientation and position in the field and 

on stimulation parameters [95]. Optimal clinical results 

are obtained by using pulses of 60–200 ms duration and 

1–5  V amplitude, delivered in the STN at 120–180  Hz 

[96]. For example, high-frequency TMS produces a tran-

sient blockade of spontaneous STN activity, defined 

HFS-induced silence. During HFS-induced silence, the 

persistent Na+ current is totally blocked and the Ca2+-

mediated responses are strongly reduced, suggesting that 

T- and L-type Ca2+ currents are transiently depressed by 

high-frequency TMS [97].

Indeed, recent evidence suggests that the stimulation 

of the motor cortex, the cerebellum and the BG not only 

produces inhibitory and excitatory effects on local neu-

rons, but also influences afferent and efferent pathways. 

�erefore, the mechanism of action of high-frequency 

TMS depends on changes in neural activity generated in 

the stimulated, afferent and efferent nuclei of the BG and 

motor cortex [98].

High-frequency transcranial magnetic stimulation 

in Parkinson’s disease

In the first PD patients treated with high-frequency TMS 

in 1993, motor symptoms, tremor, rigidity and akinesia 

improved significantly allowing to decrease the admin-

istration of -dopa by a mean of 55% [99]. Since then, 

several thousands of patients worldwide have been fitted 

with high-frequency TMS implants achieving marked 

improvements in their symptoms, making this method 

the reference procedure for advanced PD [100]. �e time 

course of improvement following high-frequency TMS 

treatment differs for different cardinal symptoms of PD 

[101]. For instance, rigidity and resting tremor decrease 

immediately, within a few seconds after high-frequency 

TMS [102]. Different clinical effects are observed in PD 

patients depending on the site of stimulation [103]. For 

example, stimulation of the ventral intermediate nucleus 

of the thalamus can dramatically relieve PD-associated 

tremor [104]. Similarly, stimulation of the STN or globus 

pallidus interna (GPi) can substantially reduce rigidity, 

tremor, and gait difficulties in patients affected by idi-

opathic PD [105]. Stimulation of the GPi also reduces 

all of the major PD motor manifestations, including the 

reduction of -dopa-induced dyskinesias and involun-

tary movements produced by individual doses of dopa-

minergic medications that can limit treatment efficacy 

[106]. �alamic stimulation in the region of the ventral 

intermediate nucleus reduces limb tremor but it has lit-

tle effect on other manifestations of the disease [107]. In 

order to explain the beneficial effects of high-frequency 

TMS, two fundamental mechanisms have been proposed 

by Garcia and coworkers: silencing and excitation of STN 

neurons [95]. �ey reported that high-frequency TMS 

using stimulus parameters that yield therapeutic effects 

has a dual effect, i.e. it suppresses spontaneous activity 

and drives STN neuronal activity. High-frequency TMS 

switches off a pathological disrupted activity in the STN 

(i.e. silencing of STN neurons mechanism) and imposes 

a new type of discharge in the upper gamma-band fre-

quency (60–80 Hz range) that is endowed with beneficial 

effects (i.e. excitation of STN neurons mechanism) [95]. 

�is improvement generated by high-frequency TMS 

is due to parallel non-exclusive actions, i.e. silencing of 

ongoing activity and generation of an activity pattern in 

the gamma range [108]. �ere is an important advantage 

in silencing spontaneous activity and generating a pat-

tern: the signal to noise ratio and the functional signifi-

cance of the new signal are enhanced [109].

Techniques and preparations employed to study the 

mechanisms of high-frequency TMS include electrophys-

iological techniques, measurement of neurotransmit-

ter release in vivo, post-mortem immunohistochemistry 

of a metabolic marker such as cytochrome oxidase and 

imaging studies in  vivo [95]. Such results consistently 

show a post-stimulus period of reduced neuronal firing 

followed by the slow recovery of spontaneous activity. 

High-frequency TMS, at frequencies >50 Hz, applied to 

the STN of PD patients undergoing functional stereotac-

tic procedures [110–112], to the STN of rats in vivo [113, 

114] and rat STN slices in vitro [97, 115, 116], produces 

a period of neuronal silence of hundreds of milliseconds 

to tens of seconds. During brief high-frequency TMS 

in PD patients off medication and in the murine model 
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of parkinsonism obtained by acute injections of neuro-

toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine for 

5 consecutive days, a reduced STN activity, as response 

to stimulation, is observed at 5–14 Hz and this response 

is frequency-dependent [114]. High-frequency TMS has 

two main advantages: (a) it reduces the time a patient 

spends in the “off” state because the individual dose of 

these profound diurnal fluctuations leaves a person slow, 

shaky, stiff, and unable to rise from a chair; (b) it allows 

the reduction of medications and their consequent side 

effects [117].

Pulsed electromagnetic �eld therapy
PEMF therapy is a non-static energy delivery system, char-

acterized by electromagnetic fields inducing microcurrents 

in the target body tissues [118]. �ese microcurrents elicit 

specific biological responses depending on field param-

eters such as intensity, frequency and waveform [119]. �e 

benefits of PEMF therapy have been observed in several 

clinical studies for treatment of several medical conditions 

including knee osteoarthritis [120], shoulder impingement 

syndrome [121], lower back pain [122, 123], multiple scle-

rosis [124, 125], cancer [121, 123, 125, 126], PD [127], AD 

[128] and reflex sympathetic dystrophy syndrome [129]. 

A large number of PEMF therapy devices contains user-

friendly software packages with pre-recorded programs 

with the ability to modify programs depending on the 

patient’s needs [43, 130–132]. Examples of PEMF devices 

are the Curatron® (Amjo Corp, West Chester, PA, USA), 

Seqex® system (S.I.S.T.E.M.I. Srl, Trento, Italy), MRS 

2000®, iMRS®, QRS® (all produced by Swiss Bionic Solu-

tions Schweiz GmbH, Dulliken, Switzerland) and TESLA 

Stym (Iskra Medical, Ljubljana, Slovenia).

Pulsed electromagnetic �eld therapy in Parkinson’s disease

In October 2008 the Food and Drug Administration 

approved the use of PEMF therapy for treatment of 

major depressive disorder in PD patients who failed to 

achieve satisfactory improvement from very high dos-

ages of antidepressant medications [133, 134]. Several 

studies reported PEMF therapy improved cognitive 

functions and motor symptoms. For example, an inves-

tigation involving three elderly PD patients with cogni-

tive impairment assessed the effect of PEMF therapy 

on macrosomatognosia, a disorder of the body image in 

which the patient perceives a part or parts of his body 

as disproportionately large [135]. After receiving PEMF 

therapy, PD patients’ drawings showed reversal of mac-

rosomatognosia (assessed by Draw-a-Person test) with 

reduction of the right parietal lobe dysfunction. Further-

more, PEMF therapy applied to a 49-year-old male PD 

patient with stage 3 disease, as assessed by Hoehn and 

Yahr scale, resulted in a marked improvement in motor 

and non-motor symptoms such as mood swings, sleep-

lessness, pain and sexual and cognitive dysfunctions, 

suggesting that PEMF therapy should be tested in large 

cohorts of PD patients as monotherapy and should also 

be considered as a treatment modality for de novo diag-

nosed PD patients [136]. PEMF therapy was also effec-

tive in improving visuospatial deficits in four PD patients, 

as assessed by the clock-drawing test [137]. Moreover, 

PEMF therapy improved PD-associated freezing (a symp-

tom manifesting as a sudden attack of immobility usually 

experienced during walking) in 3 PD patients through the 

facilitation of serotonin neurotransmission at both junc-

tional and non-junctional neuronal target sites [127].

Discussion
Although many studies on electromagnetic therapy 

included only a small number of participants, several 

investigations suggest that this therapy is effective in 

treating PD patients’ motor and non-motor symptoms. 

In the development of electromagnetic therapies, it is 

important to clarify the pathophysiological mechanisms 

underlying the symptoms to treat in order to determine 

the appropriate brain region to target. �us, in the future, 

electromagnetic therapy must tend towards a more per-

sonalized approach, tailored to the specific PD patient’s 

symptoms. All the types of electromagnetic therapy 

described in this review can be used in combination with 

pharmacological and non-pharmacological therapies but 

this approach is understudied in PD patients. �erefore, 

specific protocols should be designed and tested in com-

bination with other therapies in future controlled trials in 

patients affected by PD.

Transcranial magnetic stimulation

TMS increases the release of dopamine in the striatum 

and frontal cortex, which in turn improves PD symp-

toms including motor performance [138]. Further-

more, TMS applied in the prefrontal cortex induces 

the release of endogenous dopamine in the ipsilat-

eral caudate nucleus as observed by positron emis-

sion tomography in healthy human subjects [89]. TMS 

application results in partial or complete disappear-

ance of muscular pain and -dopa-induced dyskinesia 

as well as regression of visuospatial impairment. �is 

clinical improvement is followed by MEG improve-

ment and normalization recorded after TMS, suggest-

ing that TMS has an immediate and beneficial effect on 

corticostriatal interactions that play an important role 

in the pathophysiology of PD [58]. Cerasa and cowork-

ers observed that repetitive TMS applied over the infe-

rior frontal cortex reduced the amount of dyskinesia 

induced by a supramaximal single dose of levodopa in 

PD patients, suggesting that this area may play a key 
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role in controlling the development of dyskinesia [139]. 

�e mechanism underlying TMS effectiveness in PD 

remains an unanswered question due to the complex-

ity of behavioral and neuroendocrine effects exerted by 

the TMS when applied to biological systems and their 

potential impact on neurotransmitter functions [140]. 

�e effect of TMS differs depending on the stage of the 

disease, the age of disease onset, the amount of cer-

ebral atrophy and genetic factors [37]. TMS has a low 

cost and is simple to operate and portable, opening the 

possibility for patients to perform at home stimulation 

which could be of high relevance in the elderly and in 

patients who are severely disabled. As far as side effects 

are concerned, the muscles of the scalp, jaw or face 

may contract or tingle during the procedure and mild 

headache or brief lightheadedness may occur [141, 

142]. A recent large-scale study on the safety of TMS 

found that most side effects, such as headaches or scalp 

discomfort, were mild or moderate, and no seizures 

occurred [143]. Although evidence shows that TMS 

exerts complex cellular, systemic and neuroendocrine 

effects on biological systems impacting neurotransmit-

ter functions [58], future controlled studies in larger 

cohorts of patients and with a long term follow-up are 

needed to further clarify the mechanisms underlying 

TMS efficacy in PD patients.

Repetitive transcranial magnetic stimulation

rTMS can be defined as a safe and non-invasive tech-

nique of brain stimulation which allows to specifically 

treat PD with low-frequency electromagnetic pulses [60]. 

As opposed to high-frequency TMS, which can induce 

convulsions in healthy subjects, rTMS does not affect 

the electroencephalogram pattern [71, 144]. Slow waves 

have been induced by rTMS over the right prefrontal 

area, a brain area involved in executive dysfunction that 

is observed in early stages of PD and is characterized by 

deficits in internal control of attention, set shifting, plan-

ning, inhibitory control, dual task performance, decision-

making and social cognition tasks [3, 145]. rTMS applied 

to PD patients, enhances not only executive function, but 

also motor function, subjective symptoms and objective 

findings [3]. rTMS also increases cognitive function and 

other symptoms associated to the prefrontal area in PD 

patients [146]. In PD patients, therapeutic efficacy and 

long-term benefits of rTMS are obtained following mul-

tiple regular sessions rather than single sessions, but side 

effects associated to this therapy still warrant investiga-

tion in large controlled trials.

High-frequency magnetic stimulation

�e observations that STN activity is disorganized in PD 

patients and that a lesion or chemical inactivation of STN 

neurons ameliorate motor symptoms led to the hypoth-

esis that high-frequency TMS silences STN neurons 

and, by eliminating a pathological pattern, alleviates PD 

symptoms [147–151]. Garcia and colleagues proposed 

another hypothesis suggesting that high-frequency TMS 

suppresses not only the pathological STN activity but also 

imposes a new activity on STN neurons [95]. �ey pro-

posed that high-frequency TMS excites the stimulated 

structure and evokes a regular pattern time-locked to the 

stimulation, overriding the pathological STN activity. As 

a consequence, high-frequency TMS removes the STN 

spontaneous activity and introduces a new and regular 

pattern that improves the dopamine-deficient network 

[95]. Elahi and coworkers found that high-frequency TMS 

modulates the excitability of the targeted brain regions 

and produces clinically significant motor improvement in 

PD patients [66]. �is improvement is due to parallel non-

exclusive actions, i.e. silencing of ongoing activity and 

generation of an activity pattern in the high gamma range 

[152]. Several clinical studies reported positive clinical 

results following high-frequency TMS in -dopa-respon-

sive forms of PD, including patients with selective brain 

dopaminergic lesions [153]. It remains unclear whether 

the mechanisms of action of high-frequency TMS and 

-dopa are similar or they could be even synergic. How-

ever, high-frequency TMS improves the -dopa-sensitive 

cardinal motor symptoms of PD patients with benefits 

similar to those given by -dopa, though with reduced 

motor complications [154, 155]. �e interactions with 

the dopaminergic system seem to be a key factor explain-

ing the efficacy of both treatments [156]. High-frequency 

TMS changes dopamine lesion-induced functional altera-

tions in the BG of PD animal models and gives an insight 

into the mechanisms underlying its antiparkinsonian 

effects [114, 157, 158]. �e intrinsic capacity of the BG 

to generate oscillations and change rapidly from a physi-

ological to a pathogenic pattern is crucial; the next step 

will be to identify how high-frequency TMS is propagated 

inside the BG. Disadvantages of this therapy are the high 

cost and limited availability of the devices to specialized 

medical centers, limited knowledge of potential long-term 

side effects and the necessity to employ highly trained 

personnel.

Pulsed electromagnetic �elds

PEMF therapy improves PD symptoms including tremor, 

slowness of movement and difficulty in walking [159]. 

It is non-invasive, safe and improves PD patients’ qual-

ity of life [124, 160]. PEMF therapy, employed for PD 

treatment, supports the body’s own healing process for 

4–6 h after therapy session [161–163]. It can be used at 

home and applied to the entire body or locally to target 

a specific body area and, if compared with dopaminergic 
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systemic therapy, e.g. -dopa, it can offer an alternative 

treatment avoiding systemic side effects such as hepato-

toxicity and nephrotoxicity.

Conclusions
Electromagnetic therapy opens a new avenue for PD treat-

ment. Each electromagnetic therapy technique described 

in this review can be applied according to a single proto-

col or as a combination of different protocols specifically 

tailored to the PD patient’s needs. Beyond the necessity 

to choose coil or electrode size and placement, there is a 

variety of parameters that have to be taken into account 

when designing electromagnetic therapy approaches and 

they include stimulation intensity, duration, frequency, 

pattern, electrode polarity and size. Furthermore, electro-

magnetic therapy can also be combined with pharmaco-

logical or non-pharmacological treatments, e.g. physical 

therapy and cognitive tasks, to produce additive or poten-

tiated clinical effects. In conclusion, electromagnetic 

therapy represents a non-invasive, safe and promising 

approach that can be used alone or combined with con-

ventional therapies for the challenging treatment of PD 

motor and non-motor symptoms.
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